3.3 \(\int \tan ^3(d+e x) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx\)

Optimal. Leaf size=748 \[ -\frac{\sqrt{-a \left (\sqrt{a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt{a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \tan ^{-1}\left (\frac{-b \sqrt{a^2-2 a c+b^2+c^2} \tan (d+e x)+(a-c) \left (-\sqrt{a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt{2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt{-a \left (\sqrt{a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt{a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}+\frac{\sqrt{-a \left (2 c-\sqrt{a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt{a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \tanh ^{-1}\left (\frac{b \sqrt{a^2-2 a c+b^2+c^2} \tan (d+e x)+(a-c) \left (\sqrt{a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt{2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt{-a \left (2 c-\sqrt{a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt{a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}+\frac{b \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{16 c^{5/2} e}-\frac{b (b+2 c \tan (d+e x)) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{8 c^2 e}+\frac{\left (a+b \tan (d+e x)+c \tan ^2(d+e x)\right )^{3/2}}{3 c e}-\frac{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{e}-\frac{b \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{2 \sqrt{c} e} \]

[Out]

-((Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b^2 - 2*a*c + c^2])]*ArcTan[(b
^2 + (a - c)*(a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - b*Sqrt[a^2 + b^2 - 2*a*c + c^2]*Tan[d + e*x])/(Sqrt[2]*
(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b
^2 - 2*a*c + c^2])]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*e)
) - (b*ArcTanh[(b + 2*c*Tan[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(2*Sqrt[c]*e)
+ (b*(b^2 - 4*a*c)*ArcTanh[(b + 2*c*Tan[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(1
6*c^(5/2)*e) + (Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2
])]*ArcTanh[(b^2 + (a - c)*(a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) + b*Sqrt[a^2 + b^2 - 2*a*c + c^2]*Tan[d + e
*x])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c
- Sqrt[a^2 + b^2 - 2*a*c + c^2])]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c +
 c^2)^(1/4)*e) - Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2]/e - (b*(b + 2*c*Tan[d + e*x])*Sqrt[a + b*Tan[d +
e*x] + c*Tan[d + e*x]^2])/(8*c^2*e) + (a + b*Tan[d + e*x] + c*Tan[d + e*x]^2)^(3/2)/(3*c*e)

________________________________________________________________________________________

Rubi [A]  time = 23.6301, antiderivative size = 748, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 12, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364, Rules used = {3700, 6725, 640, 612, 621, 206, 1021, 1078, 1036, 1030, 208, 205} \[ -\frac{\sqrt{-a \left (\sqrt{a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt{a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \tan ^{-1}\left (\frac{-b \sqrt{a^2-2 a c+b^2+c^2} \tan (d+e x)+(a-c) \left (-\sqrt{a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt{2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt{-a \left (\sqrt{a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt{a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}+\frac{\sqrt{-a \left (2 c-\sqrt{a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt{a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \tanh ^{-1}\left (\frac{b \sqrt{a^2-2 a c+b^2+c^2} \tan (d+e x)+(a-c) \left (\sqrt{a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt{2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt{-a \left (2 c-\sqrt{a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt{a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}+\frac{b \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{16 c^{5/2} e}-\frac{b (b+2 c \tan (d+e x)) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{8 c^2 e}+\frac{\left (a+b \tan (d+e x)+c \tan ^2(d+e x)\right )^{3/2}}{3 c e}-\frac{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{e}-\frac{b \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{2 \sqrt{c} e} \]

Antiderivative was successfully verified.

[In]

Int[Tan[d + e*x]^3*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]

[Out]

-((Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b^2 - 2*a*c + c^2])]*ArcTan[(b
^2 + (a - c)*(a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - b*Sqrt[a^2 + b^2 - 2*a*c + c^2]*Tan[d + e*x])/(Sqrt[2]*
(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b
^2 - 2*a*c + c^2])]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*e)
) - (b*ArcTanh[(b + 2*c*Tan[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(2*Sqrt[c]*e)
+ (b*(b^2 - 4*a*c)*ArcTanh[(b + 2*c*Tan[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(1
6*c^(5/2)*e) + (Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2
])]*ArcTanh[(b^2 + (a - c)*(a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) + b*Sqrt[a^2 + b^2 - 2*a*c + c^2]*Tan[d + e
*x])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c
- Sqrt[a^2 + b^2 - 2*a*c + c^2])]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c +
 c^2)^(1/4)*e) - Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2]/e - (b*(b + 2*c*Tan[d + e*x])*Sqrt[a + b*Tan[d +
e*x] + c*Tan[d + e*x]^2])/(8*c^2*e) + (a + b*Tan[d + e*x] + c*Tan[d + e*x]^2)^(3/2)/(3*c*e)

Rule 3700

Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.
) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] :> Dist[f/e, Subst[Int[((x/f)^m*(a + b*x^n + c*x^(2*n))^p)/(f^2 + x^2
), x], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 1021

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(h*(a + b*x + c*x^2)^p*(d + f*x^2)^(q + 1))/(2*f*(p + q + 1)), x] - Dist[1/(2*f*(p + q + 1)), Int[(a + b*x +
c*x^2)^(p - 1)*(d + f*x^2)^q*Simp[h*p*(b*d) + a*(-2*g*f)*(p + q + 1) + (2*h*p*(c*d - a*f) + b*(-2*g*f)*(p + q
+ 1))*x + (h*p*(-(b*f)) + c*(-2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h, q}, x] && NeQ
[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p + q + 1, 0]

Rule 1078

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d
+ e*x + f*x^2]), x], x] /; FreeQ[{a, c, d, e, f, A, B, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rule 1036

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Dist[1/(2*q), Int[Simp[-(a*h*e) - g*(c*d - a*f - q) + (h*(c*d - a*f + q) -
 g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Dist[1/(2*q), Int[Simp[-(a*h*e) - g*(c*d - a*f + q
) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g,
 h}, x] && NeQ[e^2 - 4*d*f, 0] && NegQ[-(a*c)]

Rule 1030

Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[-2*
a*g*h, Subst[Int[1/Simp[2*a^2*g*h*c + a*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; F
reeQ[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \tan ^3(d+e x) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^3 \sqrt{a+b x+c x^2}}{1+x^2} \, dx,x,\tan (d+e x)\right )}{e}\\ &=\frac{\operatorname{Subst}\left (\int \left (x \sqrt{a+b x+c x^2}-\frac{x \sqrt{a+b x+c x^2}}{1+x^2}\right ) \, dx,x,\tan (d+e x)\right )}{e}\\ &=\frac{\operatorname{Subst}\left (\int x \sqrt{a+b x+c x^2} \, dx,x,\tan (d+e x)\right )}{e}-\frac{\operatorname{Subst}\left (\int \frac{x \sqrt{a+b x+c x^2}}{1+x^2} \, dx,x,\tan (d+e x)\right )}{e}\\ &=-\frac{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{e}+\frac{\left (a+b \tan (d+e x)+c \tan ^2(d+e x)\right )^{3/2}}{3 c e}+\frac{\operatorname{Subst}\left (\int \frac{\frac{b}{2}-(a-c) x-\frac{b x^2}{2}}{\left (1+x^2\right ) \sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{e}-\frac{b \operatorname{Subst}\left (\int \sqrt{a+b x+c x^2} \, dx,x,\tan (d+e x)\right )}{2 c e}\\ &=-\frac{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{e}-\frac{b (b+2 c \tan (d+e x)) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{8 c^2 e}+\frac{\left (a+b \tan (d+e x)+c \tan ^2(d+e x)\right )^{3/2}}{3 c e}+\frac{\operatorname{Subst}\left (\int \frac{b+(-a+c) x}{\left (1+x^2\right ) \sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{e}-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 e}+\frac{\left (b \left (b^2-4 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{16 c^2 e}\\ &=-\frac{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{e}-\frac{b (b+2 c \tan (d+e x)) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{8 c^2 e}+\frac{\left (a+b \tan (d+e x)+c \tan ^2(d+e x)\right )^{3/2}}{3 c e}-\frac{b \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c \tan (d+e x)}{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}+\frac{\left (b \left (b^2-4 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c \tan (d+e x)}{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 c^2 e}-\frac{\operatorname{Subst}\left (\int \frac{-b \sqrt{a^2+b^2-2 a c+c^2}+\left (-b^2-(a-c) \left (a-c-\sqrt{a^2+b^2-2 a c+c^2}\right )\right ) x}{\left (1+x^2\right ) \sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 \sqrt{a^2+b^2-2 a c+c^2} e}+\frac{\operatorname{Subst}\left (\int \frac{b \sqrt{a^2+b^2-2 a c+c^2}+\left (-b^2-(a-c) \left (a-c+\sqrt{a^2+b^2-2 a c+c^2}\right )\right ) x}{\left (1+x^2\right ) \sqrt{a+b x+c x^2}} \, dx,x,\tan (d+e x)\right )}{2 \sqrt{a^2+b^2-2 a c+c^2} e}\\ &=-\frac{b \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{2 \sqrt{c} e}+\frac{b \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{16 c^{5/2} e}-\frac{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{e}-\frac{b (b+2 c \tan (d+e x)) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{8 c^2 e}+\frac{\left (a+b \tan (d+e x)+c \tan ^2(d+e x)\right )^{3/2}}{3 c e}+\frac{\left (b \left (b^2+(a-c) \left (a-c-\sqrt{a^2+b^2-2 a c+c^2}\right )\right )\right ) \operatorname{Subst}\left (\int \frac{1}{2 b \sqrt{a^2+b^2-2 a c+c^2} \left (b^2+(a-c) \left (a-c-\sqrt{a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac{-b^2-(a-c) \left (a-c-\sqrt{a^2+b^2-2 a c+c^2}\right )+b \sqrt{a^2+b^2-2 a c+c^2} \tan (d+e x)}{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}+\frac{\left (b \left (b^2+(a-c) \left (a-c+\sqrt{a^2+b^2-2 a c+c^2}\right )\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-2 b \sqrt{a^2+b^2-2 a c+c^2} \left (b^2+(a-c) \left (a-c+\sqrt{a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac{-b^2-(a-c) \left (a-c+\sqrt{a^2+b^2-2 a c+c^2}\right )-b \sqrt{a^2+b^2-2 a c+c^2} \tan (d+e x)}{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}\\ &=-\frac{\sqrt{a^2+b^2+c \left (c+\sqrt{a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt{a^2+b^2-2 a c+c^2}\right )} \tan ^{-1}\left (\frac{b^2+(a-c) \left (a-c-\sqrt{a^2+b^2-2 a c+c^2}\right )-b \sqrt{a^2+b^2-2 a c+c^2} \tan (d+e x)}{\sqrt{2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt{a^2+b^2+c \left (c+\sqrt{a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt{a^2+b^2-2 a c+c^2}\right )} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac{b \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{2 \sqrt{c} e}+\frac{b \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{16 c^{5/2} e}+\frac{\sqrt{a^2+b^2+c \left (c-\sqrt{a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt{a^2+b^2-2 a c+c^2}\right )} \tanh ^{-1}\left (\frac{b^2+(a-c) \left (a-c+\sqrt{a^2+b^2-2 a c+c^2}\right )+b \sqrt{a^2+b^2-2 a c+c^2} \tan (d+e x)}{\sqrt{2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt{a^2+b^2+c \left (c-\sqrt{a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt{a^2+b^2-2 a c+c^2}\right )} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac{\sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{e}-\frac{b (b+2 c \tan (d+e x)) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{8 c^2 e}+\frac{\left (a+b \tan (d+e x)+c \tan ^2(d+e x)\right )^{3/2}}{3 c e}\\ \end{align*}

Mathematica [C]  time = 2.34005, size = 451, normalized size = 0.6 \[ \frac{\frac{3 b \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{4 c^{5/2}}-\frac{3 b (b+2 c \tan (d+e x)) \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}{2 c^2}+\frac{4 \left (a+b \tan (d+e x)+c \tan ^2(d+e x)\right )^{3/2}}{c}-12 \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}+6 \sqrt{a-i b-c} \tanh ^{-1}\left (\frac{2 a+(b-2 i c) \tan (d+e x)-i b}{2 \sqrt{a-i b-c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )+6 \sqrt{a+i b-c} \tanh ^{-1}\left (\frac{2 a+(b+2 i c) \tan (d+e x)+i b}{2 \sqrt{a+i b-c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )-\frac{3 (b-2 i c) \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{c}}-\frac{3 (b+2 i c) \tanh ^{-1}\left (\frac{b+2 c \tan (d+e x)}{2 \sqrt{c} \sqrt{a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt{c}}}{12 e} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Tan[d + e*x]^3*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]

[Out]

(6*Sqrt[a - I*b - c]*ArcTanh[(2*a - I*b + (b - (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a - I*b - c]*Sqrt[a + b*Tan[d +
e*x] + c*Tan[d + e*x]^2])] + 6*Sqrt[a + I*b - c]*ArcTanh[(2*a + I*b + (b + (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a +
I*b - c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])] - (3*(b - (2*I)*c)*ArcTanh[(b + 2*c*Tan[d + e*x])/(2*Sq
rt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/Sqrt[c] - (3*(b + (2*I)*c)*ArcTanh[(b + 2*c*Tan[d + e*x])
/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/Sqrt[c] + (3*b*(b^2 - 4*a*c)*ArcTanh[(b + 2*c*Tan[d
 + e*x])/(2*Sqrt[c]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(4*c^(5/2)) - 12*Sqrt[a + b*Tan[d + e*x] +
c*Tan[d + e*x]^2] - (3*b*(b + 2*c*Tan[d + e*x])*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])/(2*c^2) + (4*(a +
 b*Tan[d + e*x] + c*Tan[d + e*x]^2)^(3/2))/c)/(12*e)

________________________________________________________________________________________

Maple [B]  time = 0.401, size = 17766953, normalized size = 23752.6 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)*tan(e*x+d)^3,x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c \tan \left (e x + d\right )^{2} + b \tan \left (e x + d\right ) + a} \tan \left (e x + d\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)*tan(e*x+d)^3,x, algorithm="maxima")

[Out]

integrate(sqrt(c*tan(e*x + d)^2 + b*tan(e*x + d) + a)*tan(e*x + d)^3, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)*tan(e*x+d)^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \tan{\left (d + e x \right )} + c \tan ^{2}{\left (d + e x \right )}} \tan ^{3}{\left (d + e x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(e*x+d)+c*tan(e*x+d)**2)**(1/2)*tan(e*x+d)**3,x)

[Out]

Integral(sqrt(a + b*tan(d + e*x) + c*tan(d + e*x)**2)*tan(d + e*x)**3, x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)*tan(e*x+d)^3,x, algorithm="giac")

[Out]

Timed out